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Abstract

The surface Electromyographic (sEMG) signals recorded
along the spine during a rocking motion created by feedback
coupling between the motion of the spine and the efferent
nerve fibers at the dural attachment points are giving vari-
ous linear dynamical models of the ARIMA type. The most
significant dynamical phenomenon is the nonlinear switch-
ing among the various linear models. The switchings repre-
sent transitions among qualitatively different modes of the
motion of the spine, referred to as Levels 1, 2, 3. Statistical
analysis reveals a definite relationship between the qualita-
tively assessed levels and the various quantitatively relevant
models. Finally, it is shown that the higher the level of care,
the more reliable the model, that is, the better the model is
able to predict the motion as specified by the sEMG signal.

1 Introduction

In a book [2] that has attracted a fair amount of attention, the
Scandinavian neurosurgeon Alf Breig introduced the con-
cept of “adverse mechanical cord tension” in the central
nervous system. The tenet of this theory is the fact that the
dura mater of the spinal cord is attached to the bony verte-
brae at the cervical and sacral regions, and, consequently,
vertebral misalignment can create pathological tension pat-
terns within the spinal cord, itself impairing nerve function.
To be anatomically more specific, the meninges attach to
the foramen magnum, pass though the ring of the atlas and
insert in strips to the second and third cervical vertebrae,
and in smaller strips to the fourth through seventh segments,
and again at the sacrum and coccyx through the filum ter-
minale. In another slightly different theory, it is the den-
tate ligaments rather than the dural attachments that trans-
mit tension to the spinal cord. The dentate ligament hangs
the cord to the foramen magnum and the cervical vertebrae
via its attachment to the dura, so that excessive loads on
the midbrain, pons, and medulla are avoided. However, in
biomechanical pathological conditions the dentate ligament
can have the adverse effect of inducing adverse mechani-
cal cord tension. Alf Breig stated that, although the dentate
ligaments transmit tension, by far the greater tension is pro-
duced by factor of body posture and by the nature of the

dural attachments at the foramen magum and the filum ter-
minale. Tension in the cord can promote hyperstimulation
of the proprioceptive afferent fibers resulting in impaired
function of the spine and other areas of the central nervous
system. It has been argued by Breig that some diseases have
this biomechanical origin and that relief of adverse mechan-
ical cord tension could eliminate these diseases [3].

More closely related to the present paper is the fact that du-
ral attachments create a coupling between the biomechanics
of the spine and the central nervous system. More specif-
ically, dural attachments appear to create a feedback from
the mechanical movement of the spine to the electrical ac-
tivity of efferent nerve fibers. That some feedback occurs
has been demonstrated by a form of health care known as
Network Spinal Analysis (NSA). In this form of health care,
the NSA practitioner (at this time all chiropractors) locates
specific manual contact points based on their professional
assessment of the status of the active, passive, and neural
subsystems supporting the normal function of the nervous
system[9]. After a period of time, the nervous system be-
comes entrained to the point where the contacts elicit an os-
cillation that takes the form of a spontaneous involuntarily
controlled rocking motion of the musculature of the spine.
This is referred to as “wave.” Although the recipient can
voluntarily stop this movement, the wave produces a rather
intensive exercise for the spine and back musculature that is
not reproducible by any other physicotherapeutical means.
The latter fact is confirmed by asking the patient to fake
the wave motion and observing that the sEMG signals gen-
erated have far lower intensity and a completely different
waveform compared to the spontaneous involuntary wave
motion.

It takes some time before the recipients of NSA are able to
experience this motion in its full manifestation. The learn-
ing or “entrainment” process is characterized by three Lev-
els of care. The level of care 1 through 3 is numbered in
association with the number of anticipated rhythmically en-
trained spinal oscillators. In level 1, the spinal segment
contacted is entrained to the respiratory rhythm, at least
visually. This is the early onset period, during which the
wave motion is restricted to small localized movements.
In level 2, two spinal (coupled) oscillators engage, in the
vertebral-dural relationship areas or in the immediate vicin-
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ity of those. At this stage, gentle rocking motion become
more precise. In Level 3 of care, the two spinal oscil-
lators already developed in level 2, such as occiput and
sacrum, are still entrained, in addition to the development
of a third thoracic-sternal oscillator. This level has very spe-
cific movements of the spine and highly coordinated with
the deep breathing patterns.

Retrospective study demonstrates that recipients of this
form of care experience health and restorative benefits. As
well, other research has also shown therapeutic benefits for
a quadraplegic patient five years post injury when subjected
to involuntary physical activity [8].

In regard to NSA the recorded sEMG signals take the form
of a “background” signal interrupted by “bursts” of accrued
sEMG activity [1], the frequency and intensity of which
increase with the Level of care. In this paper we look at
the signal-theoretic and dynamic properties of the sEMG
signals generated during the process of entraining patients
from Level 1 to Level 3. The goal was to provide some ob-
jective mathematical confirmation of the transition between
the Levels of care, which so far have been left to the prac-
titioner’s subjective judgment and physical assessments. To
achieve this task, we developed “black box” dynamical
models of the ARIMA type for the various segments of the
data record. Each segment corresponded to a Level of care
as well as the recipient’s position (sitting, prone, supine).
Our objective was to establish that the models are “Level
specific” and “position specific” and that there is an iden-
tifiable trend in the dynamical models of the signals gener-
ated from one Level to the next. More specifically, it was
shown that the various Levels could be distinguished by the
predictability of the sEMG signals as the error between the
signal and its dynamical prediction decreases with the Level
of care.

2 Data collection protocol

The sEMG signals from the muscle groups lateral to the
spine were recorded by means of noninvasive electrodes
placed at the cervical, thoracic, lumbar and sacral regions
with the recipient of NSA care successively in the prone,
sitting, and supine positions. The electrodes were inputs to
an Insight Millenium sEMG machine. While this machine
allows for such preprocessing as low pass filtering, we used
the raw sEMG data. The analog output signals of the am-
plifiers were themselves inputs to a Measurement Comput-
ing DAS16/16 converter board with the sampling rate set to
4000 samples/sec.

In this study, a recipient of NSA care, who was assessed
to be in Level 3, was taken progressively from early Level
1 to advanced Level 3. There were four readings shown
in chronological order with the corresponding Levels and
positions in Table 1.

recording segment level position
(model)

1 1,2,3 1,2 prone
2 4,5,6 2,3 prone
3 7,8,9 2 sitting
4 10,11,12 3 supine

Table 1: Various recording at various levels in various positions.

There were short rest periods between consecutive record-
ings, during which the recipient was put in another posi-
tion and the data collection software reinitialized. Each
recording had four channels (cervical, thoracic, lumbar and
sacral). Each channel recording consisted of 196,608 data
points (49 seconds). In this paper we focus on the cervi-
cal signal. Each of the 4 cervical recordings was divided
into 3 segments of 65,536 samples (16 secs/segment). The
long range cervical signal was hence decomposed into 12
segments. Each segment was meant to be representative of
a Level of care (1, 2 or 3) together with a position (prone,
sitting, supine).

3 ARIMA modeling

3.1 theoretical overview
An Auto Regressive Integrated Moving Average���������	� 
���
������

model of a nonstationary experimentally
observed time series ��� ������� is�����������! ��#"%$&���(' � �����()�*+���-,.�����#/0����� (1)
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, in case the raw sequence ��� ������� ap-

pears nonstationary, but can be made stationary by incre-
mentation. The Smallest CANonical (SCAN) correlation
method and the Extended Sample Autocorrelation Func-
tion (ESACF) method are used to identify tentative orders� 
?>@
������

of the stationary or the nonstationary models of
the signals as

���A���B� 
C>B
������
. Should the SCAN and

ESACF methods indicate that

D>E
F8G"

, then the Aug-
mented Dickey-Fuller (ADF) unit root test should be used
to determine whether the term of degree

� 
H>B
��
is a purely

autoregressive term or whether it has a unit root. In the for-
mer case where the unit root test fails, we set


C*+:
and we

have an ARMA model. In the latter case where the unit root
test passes, we go to the incremental signal

�#"A$I��� � and
reapply the Dickey-Fuller unit root test. This process is it-
erated until the unit root test fails. This yields



, with which

the SCAN and ESACF methods are used on
�#"�$A��� ' � to de-

rive the tentative degrees
� 
������

, which in turn yield tentative
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polynomials
���%�

and
���-,

, and final selection is made on
the basis of best possible least squares fit.

3.2 ARIMA modeling at various levels in various posi-
tions
For each of the 12 segments identified in Section 2 (Ta-
ble 1), an

���������
model representative of that segment

was derived as follows: Each segment was decomposed
into subsegments of 5,000 points each and, for each sub-
segment, the auto correlation sequence ����� � * " ��� � � ���
	
and the partial correlation sequence � ��� �?* " ��� � � ���
	

for a
lag of 25 were derived. Each subsegment defined a point��
������� 5�� ��� � ��
������� 5�� � � � � in � � and as such each segment
led to a cluster in � � . By visual inspection, one such sub-
segment point was chosen at the middle of the cluster as
representative of the segment. This led to 12 subsegments
of 5,000 data points, each subsegment representative of a
given segment. For each sample subsegment, the SCAN
and ESACF methods indicated that


<> 
 8+"
and the Aug-

mented Dickey-Fuller unit root test indicated that this term
had a unit root. Upon going to the first order difference sig-
nal � �1��� * � ����� $ � ���-$&"0� , the Augmented Dickey-Fuller
unit root test failed, so that � is a nonstationary signal with
one unit root, that is,


&* "
. In all cases, only one differ-

entiation was necessary for the unit root test to fail. This
led to 12

���������	� 
���
C*F" �����
baseline models, labeled as

the segments (see Table 1). These models are listed in the
Appendix.

With these models at hand, we will examine how specific
they are to the various levels and the various positions (see
Figure 4). Another relevant issue will be to examine how
accurate they are in their ability to predict the sEMG sig-
nal at the various levels (see Figure 3). This would provide
some mathematically objective confirmation of the levels of
care.

3.3 burst versus background signal
Visual inspection of the incremental sEMG signal of Fig-
ure 1, confirmed by more objective dynamic analysis [7],
reveals that the sEMG signal can be decomposed into two
dissimilar signals. The first one is associated with some
“background” signal (see Figure 1) and the other one is as-
sociated with the “bursty” part of the signal. The autocor-
relation and partial correlation functions are the tools that
were used in [7] to discriminate the “burst” signal from the
”background” signal. Roughly speaking, the burst signal
is distinguished from the background signal as being more
stationary as revealed by a faster decaying autocorrelation.

A rather surprising fact is that the discrimination between
the “burst” part and the “background” part of the signal does
not quite coincide with the intuitive, naked eye analysis of
the raw sEMG signal classifying as “bursty” an area of ac-
crued sEMG activity. However, the same intuitive, naked
eye analysis applied to the incremental signal yielded re-
sults somewhat more consistent with the rigorous mathe-
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Figure 1: The overall raw sEMG signal recorded at the neck level
showing at the beginning a “background” area and then
becoming predominantly “bursty.”

matical analysis.

Visual observation of the sEMG waveform sometimes al-
lows for Levels 1,2,3 classification, in the sense that at high
level of care the bursts become more intense and more fre-
quent. If we attempt a more objective classification by dy-
namic modeling as it is proposed here, we would be forced
to make a subjective choice between the backgound part or
the burst part of the signal, and in case of the latter yet an-
other choice would be which burst to choose. For these rea-
sons, the approach taken here is to decompose the given
segment of sEMG data record into several subsegments of
equal length and choose the most relevant subsegment by
clustering analysis. In other words, we leave it to the soft-
ware to decide whether the dynamics is “background dom-
inated” or “burst dominated.” It turns out that only the first
segment was “background” dominated while all other seg-
ments were “burst” dominated.

4 Model accuracy versus level of care

Regarding the quality of the models, that is, the ability of the
models to predict the data at the corresponding level of care,
we devised the following experiment: Each model was used
as a one-step predictor on the data segment it was derived
from. For each such data segment, the relative fitting error,
that is, the average mean square one-step prediction error
devided by the signal variance, was computed. The plot of
the relative prediction error � ���#� versus the model index

�
is shown in Figure 2. This plot is decreasing, except for
Models 7,8,9. Now, remember that around Models 7,8,9,
there is a level trend reversal. The patient was already at
Level 3 in Models 4,5,6 and then, because of the change of
position, was brought back to Level 2 at Models 7,8,9. For
this reason, we introduce the following permutation:
� ��! "�#�$%#'&%#)(*#�+%#',%#'-.#'/%#�0%#�"�1%#2"2"�#�"�$�3
4�56! "�#�$%#'&%#'-.#'/%#�0%#�(*#�+%#',%#2"�1%#�"2"�#�"�$�3
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Figure 2: Relative one step prediction error
�

versus model.
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Figure 3: Relative one step prediction error
�����

versus level of
care.

In other words, if we follow the right-hand side sequence,
the patient starts at Level 1 in the prone position, then
goes to Level 2/prone position, to Level 2/sitting, to Level
3/prone, and finally to Level 3/supine. This represents a
monotone trend to higher and higher level of care. Call
this model re-indexed consistently with the level of care���.
��
	��

. Then upon plotting ��
�� versus the index of���.
��
	 �
, which represents the level of care, the curve has

an overall monotone decreasing appearance (see Figure 3).
It transpires from this that, as the patient goes from Level
1 to Level 2 to Level 3, the sEMG signal becomes, more
predictable, more amenable to dynamical modeling.

5 Level specificity and switching dynamics

Now, we try all 12 models on the long range data record. Of
course, a model will fit the data segment from which it was
identified; however, the same model may or may not fit the
other data segments. In the latter case, we would conclude
that there is some “specificity” in the model attached to a
level of care.

The 4 neck recordings were concatenated to produce a sin-
gle global recording of 786,432 data points. For each such
data point

��� � " ��� ��� � � ����������� ��� , the interval � �C$ 	�: :������
was considered and the model best fitting the data � �������
� " ��� ��� � � � " ��� was derived. The fitting criterion was based
on the following mean square error:

��� !
� 5

" � �$#&% '�')(! $ �+*
! ,�-�. (! � � > � � #&% '�')(! $ � *

! ,�-�. (! � �0/
where � �

!
�

is the autocorrelation sequence and � �
!
�

the par-
tial correlation sequence of the incremental signal.

The results are plotted in Figure 4 in the form of a function

� � � " ��� ��� � � ����������� ���&1 � " ��� ��� � � � " �����

The abscissa represents the 786432 data points. The ordi-
nate represents the various models. For each

�
, � ����� is the

model that best fit the data segment. The crucial point is to
observe that this function is nearly staircase shaped, indi-
cating a good correlation between the model and the level
of care. More specifically, the following features are worth
mentioning:

1. Level 1, prone position, yields a most diffentiated sig-
nal because its model, 1, does not fit any data other
than the early Level 1 data.

2. Level 2, prone, appears to follow models 2, 3. Level
3, prone, appears to follow models 4, 5, 6. However,
Level 3 data, prone, also seems to be fitted by model
2 and to a lesser extend by model 4. Therefore, while
Model 2-6 are specific to Level 2, prone and Level
3 prone, there are some difficulties at differentiating
Level 2 from Level 3 in this position.

3. Level 2, sitting, yields a very differentiated signal
since models 7-9 are the only ones capable of fitting
this data.

4. Level 3, supine, also yields a very differentiated sig-
nal, because only models 10-12 fit the data, while
these models do not fit other data.

The best fitting criterion yields an overall sEMG signal that
can be represented, over a short period of time, by a se-
lected ARIMA model and, over a longer period of time, by
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Figure 4: Best fitting model versus time.

switchings among the 12 models. These switchings repre-
sent transitions among the 3 levels of care, transitions be-
tween sitting, prone, and supine positions, etc. For purpose
of illustration, we choose the transition between level 2 and
level 3 (prone position), where we switch from model 3 to
model 4. This is shown in Figure 5.

6 Conclusions

The main point of this paper is that the ARIMA models of
the sEMG signals recorded during NSA entrainment appear
to have some Level specificity (as Figure 4 indicates) and,
more decisively, the predictability of the sEMG signal im-
proves with the Level of care (as Figure 3 indicates). As
such, some objective classification of the Levels of NSA by
sEMG signal analysis can be anticipated in a foreseeable
future.

The observation that the sEMG signal becomes more deter-
ministic at higher Levels of care can probably be justified by
a Hebbian learning argument. That is, at Level 3, the synap-
tic strengths are adjusted, the neural pathways are estab-
lished, and consequently the signal becomes less random.
The fact that the sEMG signal consists of a “background”
part and a “burst” part is reminscent of single neuron burst-
ing [5] and switching phenomena between different dynam-
ical behaviors in many neurons dynamics [6]. However,
such well-documented switchings as the gamma-beta and
spindling-delta involve transition between rhythms of dif-
ferent frequencies [6] whereas in the NSA sEMG data there
is no such frequency shift. It is of interest that the thalamus
is known to have burst activity. However, it is not currently
known if the thalamus is involved in the NSA physiological
phenomena. However, functional MRI study did indicate
that NSA has its neural pathways not limited to the spine
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Figure 5: Transition between Level 2 (Model 3) to Level 3
(Model 4).

but involving some areas of the brain. On another tone,
probably the most interesting challenge for control-theorists
would be to figure out whether the dynamics of the sEMG
signals could lead to some better understanding of the dural
attachment feedback.
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Appendix: ARIMA Models

The dynamics models are of the ARIMA
form of Equation 1. Here below, we list the���-,.����� �  ��#"�$&��� ' �����������()

parts of Model 1 through
Model 12, successively.
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